На главную страницу
Ипотека онлайн
Самые выгодные предложения банков по ипотеке с онлайн-заявкой
Кредит онлайн
Кредиты на любые цели — расчет выгодных условий и заявка онлайн
ОСАГО онлайн
Пошаговый гид для расчета и оформления
Новостройки
Актуальные предложения по продаже квартир от застройщиков

Data Science: что это такое, перспективы профессии и как обучиться

16 апреля 2023 19:55
247
Иван Блинов

С развитием компьютерных технологий появилось понятие Big Data – массива информации большого объёма. Специалистов, которые стали работать с большими данными, называют дата-сайнтисты. В их задачи входит обработка и структуризация данных для обнаружения закономерностей и построения прогнозов. Рассмотрим подробнее, кто такие специалисты по data science – что это за профессия, где можно её получить и сколько удастся заработать.

Содержание статьи

Data Science – что это такое

Data Science – область знаний на стыке анализа, статистики и машинного обучения. Это наука о данных, но такое понятие достаточно размыто и не отражает сути. Data переводится как «данные» – именно с ними работает специалист: собирает, хранит, обрабатывает, ищет нужную информацию в массиве. Science переводится как «наука» и означает, что специалист должен не просто собрать данные и отправить на хранение. Он обязан уметь структурировать и анализировать их, находить закономерности и использовать для построения прогнозных моделей. Но и на этом всё не заканчивается – дата-сайнтисты не просто выдвигают версии, но и строят планы по применению результатов для конкретных задач.

Дата Сайнс – довольно трудоёмкая сфера деятельности. Специалисту приходится работать с большими объемами неструктурированных данных и извлекать из них полезную информацию, которую можно использовать в том числе для бизнеса. Это касается многих сфер, например, e-commerce, здравоохранения, логистики, рекламы, финансов. Самый простой пример – планирование перевозок и составление оптимальных маршрутов доставки в сфере логистики.

Кто такой Data Scientist

Специалистов, работающих с Big Data, называют data scientist. В их задачи обычно входит:

Например, в бизнесе такой специалист может обработать массив данных о спросе на товары компании за прошлые периоды – 1 год, 5 лет или десятилетие. Затем на основе полученного результата составить прогноз, как поменяется спрос в текущем году или в следующие 5–10 лет.

Такие сотрудники востребованы в различных сферах – в ритейле, финтехе, промышленности и др. И чем крупнее компания, тем больше она нуждается в таком специалисте.

Основные компетенции:

Дата-сайнтист и аналитик данных – разные профессии. Оба таких специалиста используют большие массивы данных, но аналитик только анализирует информацию, а Data Scientist ещё и строит прогнозные модели.

Что должен знать и уметь Data Scientist

Специалист по Дата Сайнс должен уметь:

Для этого понадобятся определённые знания:

Кроме того, нужно разбираться:

В некоторых случаях используются другие языки программирования, например, С или C++, но обычно их применяют в решении сложных или нестандартных задач.

В мире Data Science также существует деление на Junior, Middle, Senior, Team Lead. Соответственно, отличается и перечень задач для каждого профиля. Например, Junior Data Scientist умеет подготовить данные, использовать машинные модели обучения, определить качество, но обычно работает под руководством более опытного наставника. Middle участвует в обсуждении бизнес-задач клиента и бо́льшую часть работ выполняет самостоятельно. Senior не только решает, но и ставит задачи, выступает ментором для джуниоров. Есть разные направления роста – например, переход в Deep Learning engineering (разработка нейронных сетей).

Актуальность и востребованность профессии

Спрос на специалистов по науке о данных растёт во всём мире. Стремительное развитие алгоритмов машинного обучения и построения на их основе прогнозов говорит о том, что у профессии есть потенциал. Такие специалисты нужны в разных отраслях:

По прогнозам Министерства труда США, к 2026 году спрос на эту профессию вырастет почти на 30%. В России востребованность специалистов в сфере обработки больших данных за 3 прошлых года увеличилась более чем на 400%. По состоянию на начало апреля 2023 на hh.ru размещено 420 вакансий.

Сколько зарабатывает специалист в Data Science

Как и в других сферах, заработок напрямую коррелирует с объёмом навыков и опытом работы. В среднем, по данным hh.ru, джуниоры могут рассчитывать на зарплату от 40–60 тыс. руб., специалисты с опытом – на 150–200+ тыс. руб.

Конечно, в регионах зарплаты программистов и других IT-специалистов скромнее, чем предлагают столичные работодатели. Доход зависит ещё и от сферы деятельности – в крупных компаниях, например, банках, IT, оклады в целом выше.

Как обучиться Data Science

Изучить Дата Сайнс можно и с нуля, но легче это сделать, если владеть какой-либо другой IT-специальностью. Для этого подойдут статьи, тематические форумы, блоги, видео в интернете и бесплатные курсы. Без хотя бы базовых знаний освоить профессию будет сложно, в этом случае лучше использовать платные курсы, где со студентами работают преподаватели и дают обратную связь.

Бесплатные курсы

Для тех, кто делает первые шаги в профессии, подойдут бесплатные курсы – на них можно получить базовые знания и понять, стоит ли двигаться дальше:

  1. «Введение в Data Science и машинное обучение» от Bioinformatics Institute. Курс рассчитан на новичков, познакомит с азами машинного обучения и базовой теорией Дата Сайнс на реальных кейсах. Состоит из 30 видеоуроков, 54 тестов и интерактивных задач. В программе 11 блоков на различные темы. На занятия нужно выделять в среднем до 6 часов в неделю.
  2. «Машинное обучение» от ОмГТУ. Курс обучает работе с Big Data, анализу результатов. Состоит из 73 видеоуроков и 68 тестов, продолжительность – 72 часа. Разбит на 3 большие блока, по итогу которых слушатели выполняют тесты и практическое задание.
  3. «Data Science: будущее для каждого» от Нетологии. Трёхдневный курс в онлайн-формате для новичков. Позволит разбираться в разных направлениях работы с большими данными, приобрести базовые навыки и изучить инструментарий. В конце обучения – одно практическое занятие. Доступ к выданным материалам остаётся навсегда.
  4. «Анализ данных» от РЭУ им. Г.В. Плеханова. Программа для начинающих, знакомящая со статистическим анализом. Состоит из 20 уроков, 137 тестов и одного видео. Подойдёт для новичков, но необходимы знания общеэкономической теории и математики.
  5. «Introduction to Data Science» от Alison. Англоязычный курс, состоит из трёх больших модулей. Позволяет получить базовые навыки, подойдёт для начинающих. При успешной сдаче итоговых тестов выдаётся сертификат.

Бесплатное обучение обычно предполагает самостоятельное освоение программы и направлено на то, чтобы дать слушателям базовую информацию по Data Science – что это такое, где применяется, какие инструменты используют, в каком направлении двигаться дальше.

Платные курсы

Платные курсы более эффективны, поскольку на них можно получать обратную связь от наставника, программы обычно структурированы:

  1. «Специалист по Data Science» от Яндекс.Практикум. Продолжительность 8,5 месяцев, на курсе изучают Python и его библиотеки, Jupyter Notebook и SQL. В процессе студенты собирают портфолио с 16 проектами, по окончании школа помогает с поиском работы. Подходит для освоения профессии с нуля и начинающих датасаентистов.
  2. «Профессия Data Scientist» от Skillbox. Курс с тремя направлениями обучения – data-engineer, аналитик данных и machine learning engineer. Состоит из более чем 100 практических заданий, рассчитан на 12 месяцев. По окончании лучшим студентам предлагают трудоустройство в компаниях-партнерах.
  3. «Data Scientist» от ProductStar. Интенсив с акцентом на практику для новичков. Научит работать с SQL, Python, библиотеками, строить модели машинного обучения. При школе работает карьерный центр, который помогает с трудоустройством.
  4. «Основы работы с большими данными» от учебного центра «Специалист». Курс представлен в двух форматах – очном и онлайн. Перед началом занятий студенты проходят бесплатное тестирование для определения уровня предварительной подготовки.
  5. «Data Scientist» от Skill Factory. Продолжительность обучения 2 года, подходит новичкам. Около 80% времени занимает выполнение практических задач. На глубокое изучение уйдет в среднем 8 часов в неделю. Есть несколько тарифов.

В школах студенты работают под руководством наставников с проверкой домашних работ. По окончании обучения можно получить сертификат или диплом.

Вуз

Профессия относительно новая, поэтому отдельного направления в вузах нет. Необходимые знания можно получить в технических институтах и университетах:

Отлично подойдут вузы, где есть направления по математическому анализу, машинному обучению.

Плюсы и минусы профессии

Как и во многих digital-профессиях, в работе с Big Data есть свои нюансы.

Плюсы

К преимуществам профессии можно отнести:

Ещё один плюс – лёгкий переход в другую нишу в сфере IT и возможность совмещения специальностей.

Минусы

Недостатками профессии можно считать:

Самообучение бывает малоэффективным, особенно для тех, кто не переходит из другой IT-сферы, а начинает с нуля. Поэтому иногда не обойтись без платных курсов.

Теги: Инструкции