Data Scientist с нуля до PRO - SkillFactory

SkillFactory
Срок обучения
Рассрочка
20 371 ₽/мес
Рейтинг школы
35 отзывов
Стоимость курса
244 447 ₽
Как учит школа
Запись уроков
Свободный график
Сертификат Диплом о профессиональной переподготовке установленного образца
Помощь в поиске работы
Домашние работы
Тренажер
Пополнение портфолио
Data Scientist с нуля до PRO
О профессии

Курс Data Scientist с нуля до PRO стоимостью 244 447 ₽ от школы SkillFactory. Срок обучения - можно уточнить в школе. Школа SkillFactory оформляет рассрочку на обучение с платежом - 20 371 ₽/ мес. Оплатите курс и начните учиться.

Вопрос-ответ
Отрасли применения Data Science
С помощью обучающих алгоритмов машинного обучения можно научить программы делать что угодно:1. Предлагать дополнительные товары, которые пользователь купит с наибольшей вероятностью, на основе его поведения на сайте и покупок. Таким образом увеличивать продажи и прибыль бизнеса. Этому вы научитесь в модулях по рекомендательным системам.2. Предсказывать события в клиентской базе. Таким образом можно заранее предпринять меры, которые сократят расходы или увеличат прибыль. Возьмем для примера страховую компанию, которая предоставляет услуги ДМС. Если она научит программу предсказывать, кто из клиентов в ближайшее время обратится за дорогостоящей медицинской услугой, то сможет предпринять меры, чтобы сократить расходы по ДМС. Например, позвонить клиенту и предложить ему проконсультироваться с хорошим врачом, чтобы не допустить развития болезни. Прогнозирование вы изучите в блоке «Введение в машинное обучение».3. Формировать заказы на поставку для магазинов сети с учетом динамики продаж, сезона, прогноза погоды и других параметров. Таким образом не допускать, чтобы в торговых точках было затоваривание или нехватка товара. Построению таких моделей посвящены разделы курса по анализу временных рядов.4. Сегментировать клиентов, чтобы делать им подходящие предложения. Возьмем для примера банк, который создал новый вид кредита. С помощью машинного обучения он может выявить в базе клиентов тех, кто вероятнее всего воспользуется таким кредитом. Решать такие задачи вы научитесь в блоке «Математика и углубленное машинное обучение».5. Области применения машинного обучения и Python практически безграничны: от контроля качества товаров до диагностики оборудования на производстве, от продаж до аналитики, от повышения персонализации до аудита. Вы сможете использовать возможности алгоритмов практически в любой сфере. Проекты нашей учебной программы не ограничены какой-то определенной индустрией — вы сможете понять весь спектр применения анализа данных.
Зачем это мне?
По версии кадрового агентства Glassdoor профессия Data Scientist, напрямую связанная с машинным обучением, занимает первую строчку в рейтинге самых лучших профессий США.Ценятся такие специалисты высоко. Журнал IncRussia пишет, что зарплата специалиста по машинному обучению составляет 130 000 ₽ — 300 000 ₽. Причина в том, что на рынке мало специалистов в области Data Science. Квалификация в этой области поможет вам совершить рывок в текущей работе или запуске собственного проекта.
Что потребуется для успешного обучения
Ноутбук с установленным Python (мы дадим инструкцию и поможем с установкой). Около 8-10 часов в неделю и желание получить новые знания.
Нужны ли мне знания в математике или других точных науках, чтобы изучать Data Science?
Нет, вам не понадобится знаний, выходящих за рамки школьной программы. Мы будем учить той математике, которая пригодится.Если вы когда-то были знакомы с высшей математикой и статистикой, то вы сможете быстрее вспомнить материал.
Нужно ли быть программистом, чтобы освоить Data Science?
Нет, не нужно. Мы научим вас программировать.
Нужно ли знать английский?
Не обязательно. Знание языка — это, конечно, плюс, но выйти на хороший уровень по Data Science (уровня middle) и стать успешным специалистом можно и без него. Все наши учебные материалы на русском языке. Если вы можете читать на английском, это будет плюсом, но не является обязательным.
У меня не очень мощный компьютер. Я смогу заниматься?
Сможете, конечно! Для занятий не нужен мощный домашний компьютер или дорогая видеокарта. Достаточно компьютера с выходом в интернет. Мы научим вас использовать облачные технологии для вычислений.
Сколько времени нужно будет уделять учебе? Я еще и работаю!
От 8 часов в неделю. Если уже есть опыт в этой сфере, то занятия и выполнение заданий займут меньше времени. Можно заниматься в удобном для вас графике.
Что лучше: аналитик данных или Data Scientist?
Думаем, неверно ставить вопрос таким образом. Лучше то, что вам больше нравится. Сферы специалистов похожи, но деятельность и результат разные. Основное отличие в том, что дата-аналитик работает с ретроспективными данными и помогает руководителям бизнеса принимать решения на их основе. А дата-сайентист смотрит в будущее и создает такие модели, которые могут упростить, модифицировать, улучшить процессы в работе компании.
Какое образование должно быть у аналитика данных?
В аналитику можно прийти из любой сферы и изучать направление с нуля. Бонусом будет техническое и IT-образование.
В чем разница между дата-аналитиком и дата-сайентистом?
Основное отличие в том, что дата-аналитик работает с ретроспективными данными и помогает руководителям бизнеса принимать решения на их основе. А дата-сайентист смотрит в будущее и создает такие модели, которые могут упростить, модифицировать, улучшить процессы в работе компании.
Как долго учиться на аналитика данных?
Обучение может длиться от пяти месяцев до пяти лет — это зависит от образовательного учреждения. Курс «Data Scientist с нуля до PRO» от Skillfactory рассчитан на 25 месяцев. За это время вы освоите продвинутую математику с азов, научитесь создавать ML-модели и работать с нейросетями, получите реальный опыт на практических проектах. Выйдете на рынок подготовленным специалистом, а с помощью Центра карьеры сможете найти работу быстрее.
В чем разница между Data Science и Machine Learning?
Направления отличаются целями и задачами. Data Science извлекает полезную информацию из данных и предоставляет выводы для принятия решений. Она исследует паттерны, использует статистику, визуализирует данные. Machine Learning фокусируется на создании моделей, способных автоматически делать прогнозы на основе данных.
В чем разница между Data Scientist и Data Engineer?
У специалистов разные цели в работе. Data Scientist решает задачи бизнеса: строит прогнозные модели, проверяет гипотезы, делает выводы. Data Engineer отвечает за удобное и надежное хранение информации и быстрый доступ к ней. Это позволяет другим специалистам работать с корректными и актуальными данными.
Какова ваша политика возврата денег за курсы?
Мы стараемся гибко подходить к вашим потребностям. Поэтому учитываем обстоятельства и возвращаем стоимость обучения полностью или частично, когда это предусмотрено договором. Если вы передумали проходить курс или хотите оформить возврат по другой причине, позвоните на горячую линию — менеджер расскажет об условиях. Они также описаны в разделе 4 нашей оферты
Информация является справочной и взята с официального сайта школы

Рекомендованные курсы

139 900 ₽
5 829 ₽/мес рассрочка
 
378 000 ₽
19 805 ₽/мес рассрочка

Кредит на data Scientist с нуля до PRO - SkillFactory